1. Spherical Interface Between Two Media

A spherical interface with radius R > 0 separates two continuous media with indices n_1 and n_2 , as shown in Hecht Fig. 5.6. Using Snell's law and the paraxial approximation, show that the transverse magnification at the interface is given by

$$M_T = -\frac{n_1 s_i}{n_2 s_o} \, .$$

Start with a sketch in which you construct the image, within medium 2, of an object of height y_0 , located within medium 1. For this construction, use the location C of the center of the curved interface, which is a distance R away from the vertex. Analytically determine the height of the image, v_0 , and thereby M_T .

2. Lens in Air and in Water

A thin biconvex lens ($n_l = 1.2$) has radii $R_1 = 100$ mm and $R_2 = 150$ mm. Compute its focal lengths f

- (a) in air and
- (b) in water ($n_w = 1.33$)

in the paraxial approximation and discuss for both media if the lens is converging or diverging.

To rationalize the result obtained in (b), sketch the lens at a scale of 1:5 and trace one ray of a bundle incident parallel to the optical axis ($s_o = \infty$) showing that the refraction at the front and back of the lens faces is consistent with Snell's law given the magnitudes of the indices $(n_l < n_w)$.

3. Lens Separating Two Media

The lens in problem 2 is now inserted in a holder that separates the two media, air and water. Therefore, two distinct indices apply to the object ($n_w = 1.33$) and image ($n_{air} = 1$) sides. Using the geometry shown in Hecht Fig. 5.14, show that the two focal lengths, f_0 and f_1 , now differ from each other.

4. Imaging the Horse

Hecht, problem 5.24:

The horse sketched in Hecht Fig. 5.26 is 2.25 m tall and stands with its nose 15 m and its tail 17.5 m from the plane of a thin lens ($f_1 = 3$ m).

- (a) Determine the distance s_i of the image of the horse's nose and M_T at that position.
- Of which type is the image, and what is its orientation (with respect to the optical axis)?
- (b) Where is the image of the tail located, and what is M_L at that position?

Thursday, Oct-07, 2010

(4 pts)

(3 pts)

(4 pts)

(4 pts)

HW assignment, week 7

due: Wednesday, Oct-13, 2010 - before class

5. Image Blur

Hecht, problem 5.27:

A 4 mm long piece of thin wire in the object plane 60 cm from a thin lens is well-focussed on a screen where the image is 2 mm long.

(a) Use the paraxial approximation to determine the focal length of the lens.

If the screen is moved 10 mm further away from the lens, the image is blurred to a width of 0.8 mm.

(b) Imaging a source point on the optical axis, determine the diameter of the lens.

6. Magnification of a Lens Combination

Verify that the transverse magnification M_T of a combination of two thin lenses (lens 1 with f_1 at a distance of d from lens 2 with f_2) as a function of the object and image distances of the combination, s_{o1} and s_{i2} is given by

$$M_{T} = \frac{f_{1}s_{i2}}{d(s_{o1} - f_{1}) - s_{o1}f_{1}}$$

Is the result independent of f_2 ?

(3 pts)

(4 pts)